Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies.
نویسندگان
چکیده
In recent years, lots of the extracellular polymeric substances (EPS) related researches have focused on its role in the granulation and structural stability of aerobic sludge. Three-dimensional fluorescence spectrum (3D-EEM) and fourier transform infrared spectroscopy (FTIR) technologies were used to analyse the main components of sludge EPS during aerobic sludge granulation in this study. Results showed that the components of sludge EPS tended to be stable during aerobic sludge granulation. The peak F (Ex/Em=230/308.5) from 3D-EEM and the predominant spectral band at approximately 1517 cm(-1) from the FTIR spectra of the matured granular sludge indicated the importance of aromatic protein-like substances together, especially tyrosine in maintaining the stable structure of the granular sludge. Furthermore, the differences in the occurrence position and frequency of C-O bonds (1110-1047 cm(-1)) observed during aerobic sludge granulation showed that the transformations between the isomers and other forms of carbohydrates may be attributed to the formation of aerobic granule.
منابع مشابه
Fluorescent component and complexation mechanism of extracellular polymeric substances during dye wastewater biotreatment by anaerobic granular sludge
In this study, methylene blue (MB) wastewater was biotreated by anaerobic granular sludge (AnGS), and the fluorescent components of extracellular polymeric substances (EPS) and complexation mechanism were evaluated. Based on the experimental data, the sorption of MB by both live and inactivated AnGS followed the pseudo-second-order model, and the adsorption isotherm conformed well to the Langmu...
متن کاملAerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor
Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m(3) d(-1) for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g(-1), diameter of 0.5 mm, and settling velocity of 42 m h(-1) were obtained. Compared to an anaerobic/oxic plug flow (A/O)...
متن کاملEnhanced aerobic nitrifying granulation by static magnetic field.
One of the main challenging issues for aerobic nitrifying granules in treating high strength ammonia wastewater is the long granulation time required for activated sludge to transform into aerobic granules. The present study provides a novel strategy for enhancing aerobic nitrifying granulation by applying an intensity of 48.0mT static magnetic field. The element analysis showed that the applie...
متن کاملComposition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge.
Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-mum ...
متن کاملExtraction of Structural Extracellular Polymeric Substances from Aerobic Granular Sludge
To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 124 شماره
صفحات -
تاریخ انتشار 2012